Tetrahedron Letters 51 (2010) 1158-1160

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A convenient new route to enantiopure 3-hydroxy-5-oxo esters and 5,6-dihydropyran-2-ones: intricacies of the trithioorthoester protecting group

Rebecca L. Grange, Craig M. Williams*

School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072 Queensland, Australia

ARTICLE INFO

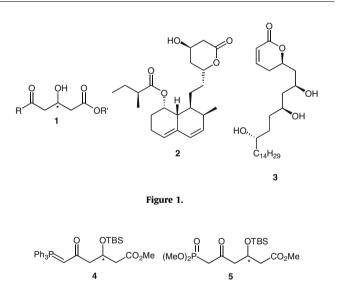
Received 15 October 2009

Revised 3 December 2009

Accepted 11 December 2009

Available online 16 December 2009

Article history:


ABSTRACT

3-Hydroxy-5-oxo esters are useful precursors to biologically active compounds. An expedient three-step synthesis of 3-hydroxy-5-oxo esters based on dithiane anion chemistry is presented along with the transformation of the 3-hydroxy-5-oxo esters into 5,6-dihydropyran-2-ones.

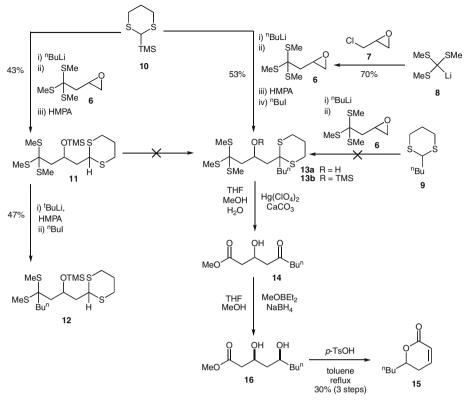
Enantiopure 3-hydroxy-5-oxo esters **1** are key intermediates for active pharmaceuticals such as HMG-CoA reductase inhibitors [statins, e.g., Mevastatin (**2**)¹], which are a top-selling family of cholesterol-lowering drugs.² Furthermore, enantiopure esters **1** are potential precursors to the 5,6-dihydropyran-2-one motif that appears in numerous biologically active natural products [e.g., (+)-passifloricin A (**3**)] (Fig. 1).³

During the course of our own work, we required an enantiopure 3-hydroxy-5-oxo ester motif. We were surprised when a comprehensive literature search revealed that firstly, only a limited number of methods for accessing this popular moiety in enantiopure form exist, and secondly, these methods are not overly attractive. Contrary to our expectations for a seemingly simple motif, many existing protocols seem to be quite lengthy. For example, a common⁴ non-enzymatic approach to HMG-CoA reductase inhibitors involves a Wittig, or a Horner-Wadsworth-Emmons reaction in addition to at least three steps to synthesise the ylide 4 or phosphonate ester 5 (Fig. 2).⁵ Other methods for preparing enantiopure 3-hydroxy-5-oxo esters rely on enzymes to introduce chirality at C3.⁶ Blandin⁷ accessed a 3-hydroxy-5-oxo ester through asymmetric hydrogenation of a 3,5-dioxo ester, and although this methodology is highly promising, the maximum ee achieved to date is 75%. Moreover, autoclave equipment, which is not always available in a synthetic organic chemistry laboratory, was required to generate this result. Accordingly, new methods to assemble rapidly enantiopure 3-hydroxy-5-oxo esters 1 using standard techniques, and readily available enantiopure starting materials, could be of some benefit.

The ring opening of epoxides by dithiane anions, followed by thioketal deprotection, is a well known strategy for constructing enantiopure β -hydroxy ketones.⁸ This transformation forms the cornerstone of the Tietze⁹–Smith¹⁰ linchpin reaction (i.e., anion

relay chemistry¹¹) that we,¹² and others¹³ have utilised in the synthesis of complex natural products. Hence, we wondered whether this powerful methodology could be further extended to encompass enantiopure 3-hydroxy-5-oxo esters **1**. This Letter describes the successful extension of such chemistry to this goal.

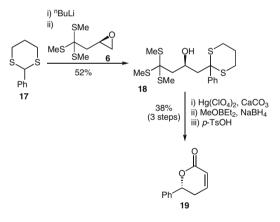
More specifically, we envisaged a concise synthesis, featuring the reaction of a dithiane anion with an epoxide linked to the tris(methylthio) masked ester group¹⁴ which culminates in a global deprotection step. The chemistry was initially developed using racemic epichlorohydrin but enantiopure epichlorohydrin was used in the later work. Both (*S*)- and (*R*)-epichlorohydrin are commercially available. The key epoxy trithioorthoester **6** was prepared in good yield by reacting epichlorohydrin (**7**) with



© 2009 Elsevier Ltd. All rights reserved.

^{*} Corresponding author. Tel.: +61 7 33653530; fax: +61 7 33654299. *E-mail address:* c.williams3@uq.edu.au (C.M. Williams).

^{0040-4039/\$ -} see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.12.058


Scheme 1.

tris(methylthio)methyllithium (**8**) (Scheme 1).^{15,16} Epoxide **6** failed to react with the anion of 2-butyl-1,3-dithiane (**9**) but did engage with the lithio derivative of TMS-dithiane (**9**) but did engage rearrangement, adduct **11**. When compound **11** was treated with ¹BuLi and ⁿBul, lithium-sulfur exchange rather than dithiane deprotonation occurred, affording the masked ketoaldehyde **12** instead of the desired 3-hydroxy-5-oxo ester precursor **13b**. Lithium-sulfur exchange is well precedented,¹⁷ but to the best of our knowledge, this is the first example of lithium-sulfur exchange in a molecule bearing an acidic dithiane proton.

The problem of competition between lithium–sulfur exchange and dithiane deprotonation was ultimately solved using Smith's three-component linchpin protocol¹⁸ and compound **13b** was accessed from TMS-dithiane **10**, epoxide **6** and 1-iodobutane, in one step, in 53% yield (Scheme 1). Simultaneous removal of all three protecting groups with $HgCl_2/HgO^{15a}$ afforded the target 3hydroxy-5-oxo ester **14** in 49% yield. Global deprotection could also be realised with $Hg(ClO_4)_2$.¹⁹ To demonstrate the utility of this dithiane-based approach to 3-hydroxy-5-oxo esters, compound **14** was further elaborated to the 5,6-dihydropyran-2-one **15**. *Syn* selective reduction²⁰ of **14** furnished diol **16** and treatment with catalytic *p*-TsOH effected lactonisation and dehydration to give lactone **15** in 30% yield from dithiane **13b** (Scheme 1).²¹

Attention turned to making the methodology applicable to 5-aryl-3-hydroxy-5-oxo esters. Pleasingly, the anion of 2-phenyl-1,3-dithiane (**17**) opened epoxide **6** to provide alcohol **18** in moderate yield (Scheme 2), albeit unoptimised. Alcohol **18** was smoothly converted into lactone **19** in the same manner as described for the *n*-butyl derivative (i.e., **15**). Lactone **19** was obtained in good overall yield (38% over three steps)²² and in 94% ee²³ (the commercially available (*R*)-epichlorohydrin used had an ee of 98% and 98% is a typical de²⁰ for a diethylmethoxyborane-mediated reduction).

In summary, a new method for accessing 3-hydroxy-5-oxo esters **1** has been described. The protocol developed is shorter than

many previously reported non-enzymatic methods. In addition, competition between trithioorthoester lithium-sulfur exchange and dithiane anion generation has been revealed for the first time.

Acknowledgement

The University of Queensland is gratefully acknowledged.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2009.12.058.

References and notes

- Heathcock, C. H.; Hadley, C. R.; Rosen, T.; Theisen, P. D.; Hecker, S. J. J. Med. Chem. 1987, 30, 1858–1873.
- 2. Tobert, J. A. Nat. Rev. Drug Disc. 2003, 2, 517-526.

- 3. Marco, J. A.; Carda, M.; Murga, J.; Falomir, E. Tetrahedron 2007, 63, 2929-2958.
- Selected examples: (a) Hecker, S. J.; Heathcock, C. H. J. Am. Chem. Soc. 1986, 108, 4586–4594; (b) Blackwell, C. M.; Davidson, A. H.; Launchbury, S. B.; Lewis, C. N.; Morrice, E. M.; Reeve, M. M.; Roffey, J. A. R.; Tipping, A. S.; Todd, R. S. J. Org. Chem. 1992, 57, 5596–5606; (c) Auerbach, B.; Choi, C.; Dillon, L.; Hanselman, J. C.; Larsen, S. D.; Lu, G.; Olsen, K.; Pfefferkorn, J. A.; Robertson, A.; Sekerke, C.; Trivedi, B. K.; Unangst, P. C. Bioorg. Med. Chem. Lett. 2007, 15, 5576–5589; (d) Pfefferkorn, J. A.; Choi, C.; Larsen, S. D.; Auerbach, B.; Hutchings, R.; Park, W.; Askew, V.; Dillon, L.; Hanselman, J. C.; Lin, Z.; Lu, G. H.; Robertson, A.; Sekerke, C.; Harris, M. S.; Pavlovsky, A.; Bainbridge, G.; Caspers, N.; Kowala, M.; Tait, B. D. J. Med. Chem. 2008, 51, 31–45.
- Harada, K.; Matsushita, A.; Sasaki, H.; Kawachi, Y. US5717124, 1998; Chem. Abstr. 1999, 128, 167563.
- (a) Uko, M.; Azuma, H.; Sakai, T.; Tsuboi, S. JP03048641, 1991; Chem. Abstr. 1992, 115, 28713; (b) Patel, R. N.; Banerjee, A.; Szaka, L. J. J. Am. Oil Chem. Soc. 1995, 72, 1247–1264; (c) Öhrlein, R.; Baisch, G. Adv. Synth. Catal. 2003, 345, 713–715.
- Blandin, V.; Carpentier, J.-F.; Mortreux, A. Eur. J. Org. Chem. 1999, 3421–3427; For asymmetric reduction of 3,5-dioxoesters derived from Taber's chiral auxiliary alcohol, see: Reddy, G. B.; Minami, T.; Hanamoto, T.; Hiyama, T. J. Org. Chem. 1991, 56, 5752–5754.
- (a) Page, P. C. B.; van Niel, M. B.; Prodger, J. C. Tetrahedron 1989, 45, 7643; (b) Yus, M.; Nájera, C.; Foubelo, F. Tetrahedron 2003, 59, 6147.
- 9. Tietze, L. F.; Geissler, H.; Gewert, J. A.; Jakobi, U. Synlett 1994, 511.
- 10. Smith, A. B., III; Boldi, A. M. J. Am. Chem. Soc. 1997, 119, 6925.
- 11. Smith, A. B., III; Wuest, W. M. Chem. Commun. 2008, 5883.

- Dong, L.; Gordon, V. A.; Grange, R. L.; Johns, J.; Parsons, P. G.; Porzelle, A.; Reddell, P.; Schill, H.; Williams, C. M. J. Am. Chem. Soc 2008, 130, 15262.
- (a) Smith, A. B., III; Condon, S. M.; Mccauley, J. A. Acc. Chem. Res. **1998**, 31, 35;
 (b) Smith, A. B., III; Pitram, S. M.; Boldi, A. M.; Gaunt, M. J.; Sfouggatakis, C.; Moser, W. H. J. Am. Chem. Soc. **2003**, 125, 14435; (c) Smith, A. B., III; Adams, C. M. Acc. Chem. Res. **2004**, 37, 365.
- 14. Damon, R. E.; Schlessinger, R. H. Tetrahedron Lett. 1976, 7, 1561.
- (a) Pan, Y.; Hutchinson, D. K.; Nantz, M. H.; Fuchs, P. L. *Tetrahedron* **1989**, 45, 467;
 (b) Barbero, M.; Cadamuro, S.; Degani, I.; Dughera, S.; Fochi, R. J. Org. *Chem.* **1995**, 60, 6017.
- For other examples of tris(thiomethyl)methyllithium reacting with epoxides, see: (a) Seebach, D. Angew. Chem., Int. Ed. Engl. 1967, 6, 442; (b) Abood, N. A. Synth. Commun. 1993, 23, 811. See also Ref. 15a.
- See, for example: Screttas, C. G.; Micha-Screttas, M. J. Org. Chem. 1979, 44, 713; Phenylthioacetals can be cleaved by aromatic radical anions: Deng, K.; Bensari-Bouguerra, A.; Whetstone, J.; Cohen, T. J. Org. Chem. 2006, 71, 2360.
- 18. Smith, A. B., III; Xian, M. J. Am. Chem. Soc. 2006, 128, 66.
- 19. Hale, K. J.; Hummersone, M. G.; Bhatia, G. S. Org. Lett. 2000, 2, 2189.
- 20. Chen, K.; Hardtmann, G. E.; Prasad, K.; Repič, O.; Shapiro, M. J. *Tetrahedron Lett.* **1987**, 28, 155.
- 21. Haase, B.; Schneider, M. P. Tetrahedron: Asymmetry 1993, 4, 1017.
- Spectroscopic data for lactone 19 were in agreement with previously reported data (Devasagayaraj, A.; Schwink, L.; Knochel, P. J. Org. Chem. 1995, 60, 3311).
 Determined by chiral HPLC (OD. hexane/2-propanol). The observed optical
- Determined by chiral HPLC (OD, hexane/2-propanol). The observed optical rotation (+188) was in accordance with the optical rotation reported for the other enantiomer (-210, see Ref. 22).